• 40.5kV 72.5kV 145kV 170kV 245kV Dead tank Vacuum Circuit-Breaker
40.5kV 72.5kV 145kV 170kV 245kV Dead tank Vacuum Circuit-Breaker
discuss personally
Model
ZW32-245kV
ZW32-170kV
ZW32-145kV
ZW32-72.5kV
ZW32-40.5kV
Basic info
Brand ROCKWILL
Model NO. 40.5kV 72.5kV 145kV 170kV 245kV Dead tank Vacuum Circuit-Breaker
Rated voltage 245kV
Rated frequency 50/60Hz
Series ZW
Product Detail

Description :

The 40.5kV, 72.5kV, 145kV, 170kV, and 245kV Dead tank Vacuum Circuit-Breakers are essential protective devices for high-voltage power systems. Employing vacuum as the arc-extinguishing and insulating medium, they boast exceptional arc-quenching capabilities, swiftly interrupting fault currents and effectively preventing arc re-ignition to ensure stable power system operation. The dead tank design offers a compact footprint and robust mechanical stability, facilitating installation and maintenance. Equipped with highly reliable spring operating mechanisms, these circuit breakers have a mechanical lifespan exceeding 10,000 operations, delivering rapid and precise responses. With outstanding environmental adaptability, they can operate stably under harsh outdoor conditions. Widely applied in substations, transmission lines, and other scenarios, they provide efficient and secure power switching control and reliable protection across various voltage levels.
 
Main function introduction:
 
  • Efficient Arc Extinction: Utilizes vacuum for rapid and reliable arc quenching, preventing re - ignition.
  • Wide Voltage Range: Available in 40.5kV, 72.5kV, 145kV, 170kV, and 245kV ratings for versatile grid applications.
  • Robust Dead Tank Design: Compact structure ensures mechanical stability and simplifies installation/maintenance.
  • Reliable Operation: Spring - based operating mechanism with over 10,000 mechanical endurance cycles.
  • Enhanced Sealing: Dual - seal flange design offers waterproof and gas - tight protection, ideal for outdoor use.
Technology parameters:
Device structure:
ZW-40.5
image.png
ZW-72.5
image.png
ZW-145
image.png
ZW-170
image.png
 
 
Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
What is Transformer Vector Groups?
What is Transformer Vector Groups?
Transformer Vector Group DefinitionThe transformer vector group denotes the phase difference between the primary and secondary sides of a transformer, while also defining the arrangement of high-voltage and low-voltage windings in three-phase transformers. Vector groups are determined by the connection configurations of three-phase transformers, which can be categorized into four main groups based on the phase difference between corresponding line voltages of the high-voltage and low-voltage sid
Edwiin
06/02/2025
What is a Pure Resistive AC Circuit?
What is a Pure Resistive AC Circuit?
Pure Resistive AC CircuitA circuit containing only a pure resistanceR(in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither
Edwiin
06/02/2025
What is a Pure Capacitor Circuit?
What is a Pure Capacitor Circuit?
Pure Capacitor CircuitA circuit comprising only a pure capacitor with capacitanceC(measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known ascapacitance(alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current
Edwiin
06/02/2025
Resonant Frequency
Resonant Frequency
In a series circuit, the resonant frequency condition occurs when the inductive reactance equals the capacitive reactance. Changing the supply frequency alters the values of XL = 2πfL and XC = 1/2πfC.As the frequency increases, XL rises whileXC falls. Conversely, a decrease in frequency causesXL to drop andXCto rise.To achieve series resonance, the frequency is tuned to fr(pointP in the curve below), whereXL = XC.At series resonance, when XL = XCWhere frdenotes the resonant frequency in he
Edwiin
06/02/2025
Current Division and Voltage Division Rule
Current Division and Voltage Division Rule
Current Division RuleA parallel circuit functions as a current divider, where the incoming current splits among all branches while the voltage across each branch remains constant. The Current Division Rule is used to determine the current through circuit impedances, as illustrated by the circuit below:The currentI splits intoI1 andI2 across two parallel branches with resistancesR1 andR2, whereVdenotes the voltage drop across both resistances. As is known,Then the equation of the current is writt
Edwiin
06/02/2025
Mesh Current Analysis Method
Mesh Current Analysis Method
The Mesh Current Analysis Method is utilized to analyze and solve electrical networks with multiple sources or circuits comprising numerous meshes (loops) containing voltage or current sources. Also known as the Loop Current Method, this approach involves assuming a distinct current for each loop and determining the polarities of voltage drops across loop elements based on the assumed direction of the loop current.In mesh current analysis, the unknowns are the currents in different meshes, and t
Edwiin
06/02/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!
商品视频播放