• Oil Distribution Transformer up to 3150 kVA
Oil Distribution Transformer up to 3150 kVA
discuss personally
Model
Minera Set Series
Basic info
Brand Schneider
Model NO. Oil Distribution Transformer up to 3150 kVA
Rated voltage 12/17.5kV
Series Minera Set Series
Product Detail

Overview

Mineral oil-immersed, 50 Hz, three-phase
distribution transformers with the following
characteristics:

  •  Hermetically sealed with integral filling
  •  Cover bolted to the tank
  •  ONAN
  •  Minerai oil in accordance with IEC 60296
  •  lndoor / outdoor use (depending on selected fittings and options)
  •  Anti-corrosion surface treatment: corrosivity category class C3, 'Medium'
    durability (according to ISO 12944-2)
  •  Final colour RAL 7033

Standards
These transformers comply with standards:

  •  EN 50588-1 (supersedes EN 50464-1:2007, EN 50708-1, EN 50541-1:2011)
  •  EN 60076-1
  •  Ecodesign regulation EU 548-2014 and its amendment EU 2019/1783

 

Characteristics
12 kV, 400 V

Dimensions and weights

 

Characteristics
17.5 kV, 400v

Dimensions and weights

 

Characteristics
 24 kV, 400v

Dimensions and weights

 

Characteristics
 36 kV, 400v

Dimensions and weights

Know your supplier
Schneider
Chengdu Fabo Automation Complete Equipment Co., Ltd is an authorized distributor of Schneider Electric, a global leader in energy management and automation solutions.
Main Categories
High voltage/Low voltage
Business Type
Manufacture/Sales
Highest Annual Export (USD)
$400000000
Professional Experience
9 years
Workplace
20000m²
占位
占位
Documents
Public.
Minera - Oil Distribution Transformer
Manual English
ZIP
Related Products
Related Knowledges
What is Transformer Vector Groups?
What is Transformer Vector Groups?
Transformer Vector Group DefinitionThe transformer vector group denotes the phase difference between the primary and secondary sides of a transformer, while also defining the arrangement of high-voltage and low-voltage windings in three-phase transformers. Vector groups are determined by the connection configurations of three-phase transformers, which can be categorized into four main groups based on the phase difference between corresponding line voltages of the high-voltage and low-voltage sid
Edwiin
06/02/2025
What is a Pure Resistive AC Circuit?
What is a Pure Resistive AC Circuit?
Pure Resistive AC CircuitA circuit containing only a pure resistanceR(in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither
Edwiin
06/02/2025
What is a Pure Capacitor Circuit?
What is a Pure Capacitor Circuit?
Pure Capacitor CircuitA circuit comprising only a pure capacitor with capacitanceC(measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known ascapacitance(alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current
Edwiin
06/02/2025
Resonant Frequency
Resonant Frequency
In a series circuit, the resonant frequency condition occurs when the inductive reactance equals the capacitive reactance. Changing the supply frequency alters the values of XL = 2πfL and XC = 1/2πfC.As the frequency increases, XL rises whileXC falls. Conversely, a decrease in frequency causesXL to drop andXCto rise.To achieve series resonance, the frequency is tuned to fr(pointP in the curve below), whereXL = XC.At series resonance, when XL = XCWhere frdenotes the resonant frequency in he
Edwiin
06/02/2025
Current Division and Voltage Division Rule
Current Division and Voltage Division Rule
Current Division RuleA parallel circuit functions as a current divider, where the incoming current splits among all branches while the voltage across each branch remains constant. The Current Division Rule is used to determine the current through circuit impedances, as illustrated by the circuit below:The currentI splits intoI1 andI2 across two parallel branches with resistancesR1 andR2, whereVdenotes the voltage drop across both resistances. As is known,Then the equation of the current is writt
Edwiin
06/02/2025
Mesh Current Analysis Method
Mesh Current Analysis Method
The Mesh Current Analysis Method is utilized to analyze and solve electrical networks with multiple sources or circuits comprising numerous meshes (loops) containing voltage or current sources. Also known as the Loop Current Method, this approach involves assuming a distinct current for each loop and determining the polarities of voltage drops across loop elements based on the assumed direction of the loop current.In mesh current analysis, the unknowns are the currents in different meshes, and t
Edwiin
06/02/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!
商品视频播放