Operation Method for PT Resonance in 500kV GIS Switching Station

James
07/08/2025

1. Causes of Resonance
A 500kV GIS switching station is designed following the principle of “primary equipment intelligence and secondary equipment networking”. The PT high - voltage side has no disconnector and is directly connected to the bus GIS. Through the analysis of fault recording diagrams, when the 5021 circuit breaker opens, the fracture capacitance and PT form a series circuit. Moreover, the bus voltage, after being paralleled by the PT inductance, shows inductive characteristics. The capacitance is disturbed, triggering resonance.
The saturated current lasts for more than 1 hour and 40 minutes, causing PT heating and damage risk. The equivalent circuit includes power supply voltage (Es), circuit breaker (CB), fracture grading capacitor (Cs), bus - to - ground capacitor (Ce), and PT primary coil resistance and inductance (Re, Lcu).
To investigate the cause, the second line was de - energized. The detection of PT insulation resistance, DC resistance, and SF₆ gas pressure showed no abnormalities. Since the electromagnetic PT is a nonlinear inductor with an iron core and GIS equipment components have capacitance, under specific scenarios, the LC series circuit meets the resonance conditions, causing continuous resonance.
2. Scientific Suppression Solutions
2.1 Solution Proposal
PT resonance is common in 500kV GIS switching stations. The permeability of ferromagnetic materials changes with the external magnetic field: as the magnetic field increases → the magnetic induction intensity rises. After saturation, the permeability reaches a peak value. With further increase, the permeability decreases. According to the coil induction formula:
(N is the number of turns, μ is the permeability, S is the equivalent cross - sectional area of the magnetic circuit, and lm is the equivalent magnetic circuit length), the coil turns and magnetic circuit parameters of the electromagnetic PT are constant, and the inductance has a linear relationship with the permeability; when the iron core is saturated, the permeability drops sharply, the inductance becomes smaller, showing nonlinear characteristics. If a low - frequency voltage appears in the circuit, the PT iron core is saturated, the equivalent inductance decreases, and the winding excitation current surges by hundreds of times, causing resonance heating.
For resonance, the following solutions are proposed:
  • Change the power - on/off sequence: When de - energizing the bus, turn off the PT first, then the bus; when energizing, charge the bus first, then put the PT into operation. This can disrupt the resonance conditions but requires adjusting the operation sequence and the PT needs to be equipped with a disconnector.
  • Remove circuit breaker fracture capacitance: It can eliminate resonance conditions but will reduce the circuit breaker interrupting capacity.
  • Connect damping resistance: Considering the actual situation, connect a damping resistance to the remaining cable set of the bus PT to suppress resonance overvoltage and overcurrent.
2.2 Accident Handling
The incoming - line PT of a 500kV GIS switching station had repeated resonance during de - energization, damaging the PT and affecting equipment operation. During the incoming - line de - energization operation (switching to hot standby → cold standby, etc.), the PT still resonated. Therefore, PT parameters were calculated, the number of primary/secondary winding turns was adjusted to reduce the magnetic flux density and change the inductance; an anti - resonance coil was installed, and the new PT and incoming - line PT were replaced. After observation and statistics, no resonance occurred in the switching station, and the equipment operated normally.
3. Preventive Measure: Install Automatic Resonance Elimination Equipment
When the bus PT is directly connected to the GIS bus, the PT and bus - to - ground resistances are not considered. Let the PT inductance be L and the bus - to - ground capacitance be C; the two are paralleled to form an impedance Z, and the calculation formula is
By installing automatic resonance elimination equipment, resonance can be suppressed based on impedance characteristics.
To reduce PT resonance impacts on 500kV GIS incoming - line PTs, air switches and nonlinear resistors are added to PT residual voltage windings (via coordination with manufacturers during full shutdowns) for automatic resonance elimination. An emergency plan for no - load bus resonance failure is required.
500kV GIS busbars use open - type installation; other devices are SF₆ - insulated (small footprint, high reliability, 20 - year+ maintenance intervals, as used in the Three Gorges Project). Reliable automatic resonance eliminators (e.g., LXQ - type with SiC, compact and easy to install; WXZ196 microcomputer - based, high - integration for real - time harmonic elimination) can prevent resonance.
3.2 Operating Regulation Improvements
For 500kV GIS operation:
  • Pre - analysis: Identify PT resonance risks; clarify roles for power/NCS operators.
  • Device control: Before shutting down the last circuit breaker, separate the bus. Close K1/K2 in the PT box; at the station entrance, activate the bus resonance eliminator (close K3, prepare resistors).
  • Real - time monitoring: NCS tracks circuit breakers and bus voltages. Zero voltage = no resonance; fluctuating voltage = resonance detected.
  • Response: For resonance, close K3 to engage resistors. If ineffective, open circuit breaker disconnectors for manual elimination.
4. Summary
During 500kV GIS design, simulate bus PT resonance to select robust PTs (prevent core saturation during switching). For existing resonance, take targeted actions (e.g., bus/PT replacement) to ensure safe operation. This “prevention - operation - design” system enhances anti - resonance capabilities.
James

Professionalism builds strength. As an expert in the installation and operation of electrical equipment, I am proficient in the installation process and strictly adhere to standards. I skillfully master the operation essentials and can swiftly eliminate faults. With a heart that constantly explores new knowledge, I illuminate the path to the efficient operation of electrical equipment.

What should be noted when selecting and installing GIS voltage transformers?
What should be noted when selecting and installing GIS voltage transformers?
In power systems, voltage transformers in GIS (Gas Insulated Switchgear) play a crucial role in voltage measurement and relay protection. Selecting the right model and installing it correctly is vital for the stable operation of the equipment. The following points should be noted regarding selection and installation.I. Key Points for Selection(1) Matching Rated ParametersVoltage Level: It must be consistent with the voltage level of the GIS system. For example, 110kV and 220kV GIS systems requir
James
07/08/2025
What are the causes of the breakdown and burning of the 35 kV GIS voltage transformer?
What are the causes of the breakdown and burning of the 35 kV GIS voltage transformer?
1. Accident Overview1.1 Structure and Connection of 35kV GIS Switchgear Voltage TransformerThe ZX2 gas-insulated double-bus switchgear, manufactured in March 2011 and officially put into operation in July 2012, is configured with two groups of bus voltage transformers (PTs) for each bus section. The two PT groups of the same bus section are designed in one switchgear cabinet with a width of 600 mm. The three-phase PTs are arranged in a triangular formation at the bottom of the cabinet.The PTs ar
Felix Spark
07/08/2025
What Are the Steps for Error Testing GIS Voltage Transformers?
What Are the Steps for Error Testing GIS Voltage Transformers?
Hey everyone, I'm Oliver, and I've been working with current transformers (CTs) and voltage transformers (VTs) for 8 years.From assisting my mentor on site to leading high-voltage testing teams and conducting error calibrations independently, I’ve dealt with all kinds of instrument transformers — especially those used in GIS systems. The error test for voltage transformers is something I perform regularly.A few days ago, a friend asked me:“Oliver, how exactly do you perform an
Oliver Watts
07/08/2025
An GIS Equipment Explosion Accident Caused by PT Secondary Wiring Errors
An GIS Equipment Explosion Accident Caused by PT Secondary Wiring Errors
1. Accident OverviewA newly - built 110kV substation’s GIS exploded during commissioning due to a PT secondary circuit short - circuit. Though the cause was simple, consequences were severe, warranting reflection.2. Accident ProcessOn the power - transmission day:The upper - level power supply charged the 110kV GIS (a combined appliance).20s after closing the incoming switch and first live - impacting the 110kV bus, white smoke emerged between the PT compartment and control cabinet.Within
Felix Spark
07/08/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!