Ceramic Capacitor: What is it?

Electrical4u
03/12/2024

What is a Ceramic Capacitor?

A ceramic capacitor is the most commonly used capacitor in an electronic circuit. A ceramic capacitor is used due to its small physical size and large charge storage capability. The ceramic capacitor gets its name from its use of ceramic as a dielectric medium.

We call the ceramic capacitors the “workhorses” of high-frequency capacitors. It is a polarity-less capacitor, and hence no polarity marking is available on the ceramic capacitors unlike the case of an electrolytic capacitor.

Thus it can be easily used in AC circuits. Ceramic capacitors typically are manufactured in values from 1pF to 100μF and DC working volts from 10 volts to 5000 volts.

Types of Ceramic Capacitor

Construction-wise it can be subdivided into two groups

  1. Ceramic Disc Capacitor

  2. Multilayer Ceramic Capacitor (MLCC)

Ceramic Disc Capacitor

Ceramic disc capacitors usually consist of two conductive discs on each side of a piece of the ceramic insulator, one lead attached to each plate, and coated with some inert, waterproof coating of some ceramic composition.

The disc-type capacitors have a high capacitance per unit volume. They are available up to a value of 0.01 μF. It has voltage ratings up to 750 V D.C. and 350V concerning A.C.
ceramic disc capacitor

Multilayer Ceramic Capacitor

Multilayer ceramic capacitors (MLCCs) are composed of multiple layers of ceramic material, often of barium titanate, separated by interdigitated metal electrodes. This construction places many capacitors in parallel.

Some MLCCs contain hundreds of ceramic layers; each layer behaves as a single ceramic capacitor. That means an MLCC comprises multiple layers of ceramic material, commonly of barium titanate, separated by metal electrodes as shown.
multilayer ceramic capacitor
The terminal contacts are taken from both ends of the structure. Some MLCCs contain hundreds of ceramic layers, each layer only a few micrometers thick.

The total capacitance of the structure would be the product of the capacitance of each layer and the total number of layers in the capacitor.

Multilayer capacitor construction, when combined with surface mount technology, can produce almost ideal high-frequency capacitors. Some small-value (e.g., tens of pico-farads) surface mount MLCCs can have self-resonant frequencies in the multiple gigahertz ranges.

Most MLCCs have capacitance values of 1μF or less with voltage ratings of 50V or less. The small spacing between the layers limits the voltage rating.

However, the small spacing combined with a large number of layers has allowed manufacturers to produce more substantial value MLCC with capacitance values in the 10 to 100 pf range. MLCCs are excellent high-frequency capacitors and commonly used for high-frequency filtering as well as digital logic decoupling applications.

High-K (K= dielectric constant) ceramic capacitors are only medium-frequency capacitors. They are relatively unstable to time, temperature, and frequency. Their primary advantage is a higher capacitance-to-volume ratio, compared with that of standard ceramic capacitors.

They are usually used in noncritical applications for bypassing, coupling, and blocking. Another disadvantage is that voltage transients can damage them.

It is therefore not recommended to use as bypass capacitors directly across a low-impedance power supply.

Advantages of Ceramic Capacitor

The advantages of ceramic capacitors include:

  • Any size or shape is available in the market.

  • At the same time, ceramic capacitors are inexpensive.

  • They are light in weight, too.

  • They can be designed to withstand up to sufficient high voltage (up to 100V).

  • Their performance is reliable.

  • They are suitable for use in hybrid integrated circuits.

Disadvantages of Ceramic Capacitor

The disadvantages of ceramic capacitors include:

  • Very high-voltage ceramic capacitors are not available.

  • High capacitance values are not possible.

Applications of Ceramic Capacitor

The medium and high permittivity ceramic capacitors are used for bypass and decoupling applications or frequency discrimination where Q factor and stability are not major issues.

Source: Electrical4u.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is a Pure Resistive AC Circuit?
What is a Pure Resistive AC Circuit?
Pure Resistive AC CircuitA circuit containing only a pure resistanceR(in ohms) in an AC system is defined as a Pure Resistive AC Circuit, devoid of inductance and capacitance. Alternating current and voltage in such a circuit oscillate bidirectionally, generating a sine wave (sinusoidal waveform). In this configuration, power is dissipated by the resistor, with voltage and current in perfect phase—both reaching their peak values simultaneously. As a passive component, the resistor neither
Edwiin
06/02/2025
What is a Pure Capacitor Circuit?
What is a Pure Capacitor Circuit?
Pure Capacitor CircuitA circuit comprising only a pure capacitor with capacitanceC(measured in farads) is termed a Pure Capacitor Circuit. Capacitors store electrical energy within an electric field, a characteristic known ascapacitance(alternatively referred to as a "condenser"). Structurally, a capacitor consists of two conductive plates separated by a dielectric medium—common dielectric materials include glass, paper, mica, and oxide layers. In an ideal AC capacitor circuit, the current
Edwiin
06/02/2025
Resistance Switching in a Circuit Breaker
Resistance Switching in a Circuit Breaker
Resistance SwitchingResistance switching refers to the practice of connecting a fixed resistor in parallel with the contact gap or arc of a circuit breaker. This technique is applied in circuit breakers with high post-arc resistance in the contact space, primarily to mitigate re-striking voltages and transient voltage surges.Severe voltage fluctuations in power systems arise from two main scenarios: interrupting low-magnitude inductive currents and breaking capacitive currents. Such overvoltages
Edwiin
05/23/2025
What is Biot Savart Law?
What is Biot Savart Law?
The Biot-Savart Law is employed to determine the magnetic field intensity dHnear a current-carrying conductor. In other words, it describes the relationship between the magnetic field intensity generated by a source current element. This law was formulated in 1820 by Jean-Baptiste Biot and Félix Savart. For a straight wire, the direction of the magnetic field adheres to the right-hand rule. The Biot-Savart Law is also referred to as Laplace’s law or Ampère’s law.Conside
Edwiin
05/20/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!