• Non-encapsulated Class H dry-type power transformer 200kVA 250kVA 315kVA 400kVA
Non-encapsulated Class H dry-type power transformer 200kVA 250kVA 315kVA 400kVA
discuss personally
Model
SG (B) 10-10KV-400KVA
SG (B) 10-10KV-315KVA
SG (B) 10-10KV-250KVA
SG (B) 10-10KV-200KVA
Basic info
Brand Vziman
Model NO. Non-encapsulated Class H dry-type power transformer 200KVA 250KVA 315KVA 400KVA
Rated capacity 400kVA
Voltage grade 10KV
Series SG (B) 10
Product Detail

Description:

Non-encapsulated Class H dry-type power transformers, available in capacity specifications of 200kVA, 250kVA, 315kVA and 400kVA, are high-efficiency power conversion devices specifically designed for modern power systems. These transformers adopt an open-frame structure without enclosed encapsulation of windings, making internal components visually accessible and easy to maintain. Their core structure is built with Class H insulation materials, which enable stable operation in high-temperature environments and effectively ensure the transformer's reliable performance under complex working conditions. In practical applications, whether for power distribution systems in commercial buildings or power supply for industrial production, these transformers with different capacities can precisely adapt to diversified power demands, providing solid support for power transmission and distribution.


Feature:

Exceptional Insulation Performance

  • Uses Class H insulation material with a maximum operating temperature of 180°C

  • Resistant to high temperatures and aging, ensuring safe and stable operation

  • Extends service life significantly

Efficient Heat Dissipation Design

  • Non-encapsulated structure promotes natural air convection

  • Rapid heat dissipation prevents thermal buildup

  • Maintains optimal operating efficiency

High Reliability & Durability

  • Premium electromagnetic wires and silicon steel laminations

  • Advanced manufacturing processes ensure short-circuit resistance

  • Withstands overload conditions, reducing maintenance costs

Flexible Installation & Easy Maintenance

  • Open-frame design simplifies installation procedures

  • Quick fault diagnosis and component accessibility

  • Minimizes downtime and improves grid efficiency

Environmentally Friendly & Energy Efficient

  • Oil-free design eliminates contamination risks

  • Optimized electromagnetic design reduces no-load and load losses

  • Significant long-term energy cost savings

Parameter:



企业微信截图_17230996998839.png


企业微信截图_17230995265040.png


The working principle of an unencapsulated Class H dry-type power transformer?

Key Components:

  • Iron Core: It is usually made up of laminated high-quality silicon steel sheets, featuring low loss and low noise. The function of the iron core is to concentrate and guide the magnetic field, thus improving the efficiency of the transformer.

  • Primary Winding: Connected to the high-voltage side, it receives the input voltage. The primary winding is usually wound with copper or aluminum wires.

  • Secondary Winding: Connected to the low-voltage side, it outputs the required voltage. The secondary winding is also wound with copper or aluminum wires.

  • Insulation Materials: H-class insulation materials such as NOMEX paper and fiberglass are used, which possess excellent heat resistance and electrical properties.

  • Cooling System: Usually, natural air cooling (AN) or forced air cooling (AF) is adopted. The appropriate cooling method is selected according to specific application requirements.

Working Process:

  • Input Voltage: The alternating current power source is applied to the transformer through the primary winding.

  • Generating Magnetic Field: The current in the primary winding generates an alternating magnetic field in the iron core.

  • Transferring Magnetic Field: The alternating magnetic field is transferred to the secondary winding through the iron core.

  • Inducing Electromotive Force: The alternating magnetic field induces an electromotive force in the secondary winding, generating the output voltage.

  • Output Voltage: The secondary winding outputs the required voltage for the load to use.


Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
What tests are required for dry-type transformers?
What tests are required for dry-type transformers?
1 Pre - commissioning InspectionAs a front - line tester, before formally commissioning a dry - type transformer, I need to carry out a comprehensive and systematic inspection. First, I conduct a visual inspection of the transformer body and its accessories, carefully checking for mechanical damage or deformation. Then, I check whether the leads of the high - and low - voltage windings are firmly connected and whether the bolt tightening torque meets the standard requirements (usually 40 - 60N&m
Oliver Watts
07/01/2025
What aspects need attention during the installation of dry-type transformers?
What aspects need attention during the installation of dry-type transformers?
1 Pre - installation PreparationAs a front - line installer, I know very well that the preparation work before installing a dry - type transformer must be thorough. First, I will carefully review the design drawings and technical documents, and check one by one the technical parameters such as the model specification, rated capacity, and voltage level of the transformer to ensure they are in full compliance with the design requirements. Then, I will conduct an unpacking inspection of the transfo
James
07/01/2025
What are the causes of dry-type transformers burning out during operation?
What are the causes of dry-type transformers burning out during operation?
1 Fault PhenomenonI am engaged in front - line fault maintenance work, and recently encountered problems with dry - type transformers. Dry - type transformers have a simple structure, are convenient for transportation, and easy for maintenance. They are widely used in power distribution places with relatively high environmental protection requirements. Because of their good fire - resistance, they can be installed in load - center areas to reduce voltage loss and power loss.The property manageme
Felix Spark
07/01/2025
Method for Automatic Isolation of Customer Equipment Faults by Load Switches in Distribution Networks
Method for Automatic Isolation of Customer Equipment Faults by Load Switches in Distribution Networks
1 OverviewDistribution network safety has long been under - addressed, with its automation lagging substation automation . Using 10 kV intervals of existing substations to set line section points meets future grid needs . Configuration of distribution switches, section switches, and protection must match substation outgoing - line protection for reliability. Fault isolation, self - healing, and restoration are key to distribution automation .Scholars have studied smart distribution network fault
Felix Spark
06/30/2025
A Novel Detection Method for Stuck Faults in Load Switches
A Novel Detection Method for Stuck Faults in Load Switches
In recent years, as distribution automation advances, load switches see wider use in distribution lines. Yet, mechanical - failure - induced accidents are on the rise, burdening line operation and maintenance.Poor mechanical performance is the main cause of switch faults. Many scholars study large - scale switchgear operation, using methods like coil current detection, vibration signal analysis, switch travel testing, ultrasonic flaw detection, and infrared thermometry. Motor - current - based s
Oliver Watts
06/30/2025
What You Need to Know About Load Switch Malfunctions
What You Need to Know About Load Switch Malfunctions
Hey there, I’m Blue — been working as an electrical engineer for more than 20 years now.I’ve spent most of my career designing circuit breakers, managing transformers, and helping power companies solve all sorts of electrical system challenges.Today, a friend from Southeast Asia asked me:"What are the common faults of load switches?"Great question! So let’s break it down in simple terms — no fancy jargon, just real-world stuff you might actually see on the job or during maintenance.First, What E
Master Electrician
06/30/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!