• 100kVA 15kV 3 Phase Oil-immersed distribution transformer
100kVA 15kV 3 Phase Oil-immersed distribution transformer
$44000.00
Model
S-M-15KV-100KVA
S-15KV-0.4KV-25KVA
S-30KV-0.4KV-500KVA
S-M-15KV-0.4KV-160KVA
S-15KV-0.4KV-250KVA
S-15KV-0.4KV-2000KVA
S-15KV-0.4KV-500KVA
S-15K-1000KVA
S-M-30KV-50KVA
S-M-30KV-0.4KV-25KVA
S-M-20KV-250KVA
S-M-15KV-50KVA
S-30KV-0.4KV-630KVA
S-M-30KV-1000KVA
S-30KV-400KVA
S-M-30KV-160KVA
S-M-30KV-100KVA
S-M-30KV-50KVA
S-15KV-25KVA
S-M-30KVA-100KVA
S-M-30KV-0.4KV-50KV
S-M-30KV-0.4KV-100KVA
S-M-33KV-0.4KV-50KVA
S-M-30KV-0.4KV-25KVA
RCW-380V
S-M-15Kv-0.4KV-100KVA
Basic info
Brand Vziman
Model NO. 100KVA 15KV 3 PhaseOil-immersed distribution transformer
Rated voltage
Rated capacity 50kVA
Primary voltage 30kV
Secondary voltage 0.4kV
No-load loss >190W
Load loss >1700W
Series S-M
Product Detail

Description:

Oil immersed transformer, use ourcompany special calculation and validation procedures to make sure theperformance of products. superior process equipment, elaborate materialselecting and efficient manufacturing make the transformer have smallvolume,light weight,low loss,low partial discharge,low noise characteristics.

The product is stable,reliable,economic, environmental protection. lt can beapplied to many places such as power plants,transformer substation ,largeindustrial mining and petrochemical enterprise and so on.

Features:

  • Ultralow no-load loss.

  • Energy saving and great power consuming efficiency.

  • Copper/ aluminum coil winding, strong short circuit resistance ability.

  • Dyn11 coil connection decrease the influences of harmonic wave.

  • Fully sealed structure for maintenance free.

  • Slow insulation aging & longer serving life.

Parameters:

Oil-immersed distribution transformer three-phase

Model NO.

S-M-100/15/0.4

Product classification

Distribution transformer

Rated capacity

100kVA

Primary voltage

15kV

Secondary voltage

0.4kV

Number of phase

3

Number of winding

2

Rated frequency

50Hz

Tap changer

OCTC

Tap range

±2×2.5%

Vector group

Dyn11

Cooling system

ONAN

No-load loss

>320W

Load loss

>170W

Impedance

4%

Basic insulation level

——

Winding material ( H.V & L.V)

Copper

The way the bushing appears

Porcelain

Power frequency withstand voltage

38kV

Lightning impulse

——

The temperature rise—Winding

62k

The temperature rise --Top oil

57k

Tank color

——

Creepage distance

>576mm

Fitting requirement

——

Environmental requirement

——

Transformer structure

Sealed

Standard

IEC60076

Port of loading

——

HS code

——

Transportation

——


External dimensions:

企业微信截图_17103775276834.png

Size

885mm×875mm×1120mm

Weight

590KG

Environmental requirement:

Max. ambient temperature

——

Altitude

——


Product show:

Yawei 160kVA 10kv Hot Selling Oil-Filled Three-Phase Distribution Transformer with UL


 How to choose the model and specification of oil-immersed three-phase distribution transformer according to load capacity?


Selecting a Transformer Based on Load Capacity:

Calculate Total Load Power:

  • First, it is necessary to determine the total power of the loads to be supplied. For residential areas, this involves considering the total power of all household electrical appliances, including lighting fixtures, televisions, refrigerators, air conditioners, etc. For example, in a residential area with 100 households, if the average power consumption per household is 5 kW (considering the simultaneous use factor), the total load power would be approximately 500 kW.

  • In industrial settings, it is necessary to tally the power of all production equipment, lighting, and office devices within the factory. For instance, in a small mechanical processing plant, the total power of machine tools might be 300 kW, and adding the power of lighting and office devices, the total load power could reach around 350 kW.

Consider Simultaneous Factor and Power Factor:

  • The simultaneous factor refers to the probability that all loads will operate simultaneously at any given moment. In residential areas, the simultaneous factor is generally between 0.4 and 0.6. In industrial settings, it is determined based on production shifts and equipment operating patterns, typically ranging from 0.7 to 0.9.

  • The power factor reflects the efficiency of energy utilization by the load. In scenarios with a high proportion of inductive loads (such as motors), the power factor is lower, usually between 0.7 and 0.9. It is essential to calculate based on actual load conditions and then select the transformer capacity based on the calculated actual load capacity.

Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
Modular Intelligent Substation - Prefabricated Secondary Switchgear Integration Assembly
Modular Intelligent Substation - Prefabricated Secondary Switchgear Integration Assembly
With the development of the national economy and society, the requirements for the quality and craftsmanship of power grid projects have become increasingly stringent. The need to improve the construction progress and quality of substations has created opportunities for the promotion of prefabricated cabin - type intelligent substations. The traditional on - site wiring and commissioning of secondary substation equipment involve a large amount of work. Moreover, on - site construction has to wai
Echo
06/13/2025
Application of Pre-integrated Prefabricated Substations in Renewable Energy Sector
Application of Pre-integrated Prefabricated Substations in Renewable Energy Sector
Against the backdrop of profound changes in the global energy landscape and the booming development of the new energy industry, the construction mode of traditional substations struggles to meet the rapid deployment needs of new energy projects. The modular intelligent prefabricated cabin substation, leveraging its innovative advantages, has become a key direction for optimizing the new energy power system. In - depth exploration of its technical principles, industry adaptability, and applicatio
Echo
06/13/2025
Research on Reliability Enhancement Scheme Implementation for Modular Intelligent Prefabricated Substations
Research on Reliability Enhancement Scheme Implementation for Modular Intelligent Prefabricated Substations
1 Implementation Strategies for the Scheme1.1 Deepen Survey and ResearchBefore constructing prefabricated cabin - type substations, it is necessary to conduct detailed surveys of local working conditions, clarify the construction scale and objectives, evaluate existing power facilities, plan projects, make up for infrastructure shortcomings, and adjust the construction rhythm. Meanwhile, control costs to avoid project suspension.1.2 Strengthen Structural ConstructionDuring promotion, multi - dim
Echo
06/13/2025
Comparative Analysis of 500 kV Prefabricated Substations vs. Conventional Substations
Comparative Analysis of 500 kV Prefabricated Substations vs. Conventional Substations
The secondary equipment area of conventional substations uses reinforced concrete or prefabricated steel structures, facing issues like long construction cycles, unreasonable functional zone design, strict environmental assessments, dust, noise, and disturbances. Primary and secondary equipment can only be installed after civil works and decoration, lowering construction efficiency.Prefabricated cabin substations integrate modularity, intelligence, and cost - effectiveness, boasting green, energ
Dyson
06/13/2025
Operational Analysis of Prefabricated Enclosure Substations in Extreme Cold Climate Applications
Operational Analysis of Prefabricated Enclosure Substations in Extreme Cold Climate Applications
Under global climate diversity, alpine power construction faces technical and environmental challenges. Extreme climates, complex geology, and long - term low winter temperatures, along with ice, snow, and storms, strain electrical equipment stability and power facility construction (schedule, cost, maintenance). Traditional on - site substations, with long construction and poor adaptability, can’t meet alpine regions’ fast, stable power needs.Prefabricated cabin substations, as modu
Echo
06/13/2025
Implementation of Precast Foundations for Ring-Main Unit Compact Substations in Grid Modernization Initiatives
Implementation of Precast Foundations for Ring-Main Unit Compact Substations in Grid Modernization Initiatives
Compact substation boxes, with advantages like safe operation, high reliability, and easy maintenance, are used in urban grid construction/renovation. Structurally divided into American - style (high - cost, noisy, low - efficiency, gradually phased out) and European - style (large - sized but more advantages, still popular).To address their pros/cons, ring - network prefabricated ones were developed.I. Basic Materials for Prefabricated Compact Substation BoxesMaterials need hardness, strength,
Echo
06/13/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!
商品视频播放