3 Application of Commercial and Industrial Energy Storage Systems
3.1 Power Peak Shaving
Commercial and industrial users exhibit peak - valley differences in electricity load. By charging during off - peak periods and discharging at peak times, energy storage systems help balance loads, reduce electricity costs, and alleviate grid supply pressure during peak hours, thereby enhancing grid operation efficiency.
3.2 Power Quality Improvement
Energy storage systems can rapidly respond to power quality issues in the grid. They enhance power quality by supplying or absorbing reactive power, stabilizing voltage fluctuations, and mitigating harmonics.
3.3 Standby Power Supply
When grid failures or outages occur, energy storage systems act as standby power sources, providing short - term electricity for commercial and industrial users. This minimizes losses and improves power supply reliability.
3.4 Renewable Energy Integration
For commercial and industrial users with distributed renewable energy (e.g., solar, wind, tidal power), energy storage systems store surplus renewable generation. They discharge stored power during periods of low renewable output (e.g., no sunlight or weak wind), boosting renewable energy utilization in the grid and accelerating the energy transition. A successful example is the integrated solar - storage - charging station, which optimizes photovoltaic power characteristics.
4 Challenges in Application
4.1 Technical Challenges
(1) Regarding battery service life, performance, and charge - discharge efficiency: While some current products achieve zero capacity fade over 5 years and PCS conversion efficiency exceeding 95%, technical breakthroughs remain difficult. Optimizing battery management strategies and improving conversion efficiency have become key to product competition.
(2) Regarding battery stability and system safety: Compared with large - scale energy storage, commercial and industrial energy storage is closer to residential areas. Thus, battery thermal management systems, explosion - proof systems, and fire - fighting systems are critical to ensuring battery stability and system safety.
4.2 Economic Challenges
(1) High initial investment costs and long payback periods.
(2) Currently, commercial and industrial energy storage revenues mainly come from peak - valley price arbitrage, and the sustainability and stability of revenues need improvement.
5 Conclusion
Commercial and industrial energy storage systems have broad prospects and significant application value in power grids, playing diverse roles. They not only help enhance grid stability and reliability but also bring economic benefits to users, promoting efficient energy utilization and sustainable development. However, numerous technical and economic challenges still exist. Further efforts are needed to strengthen technological innovation, improve market mechanisms and policies, and drive the widespread application and healthy development of commercial and industrial energy storage systems.