• Non-encapsulated Class H dry-type power transformer 200kVA 250kVA 315kVA 400kVA
Non-encapsulated Class H dry-type power transformer 200kVA 250kVA 315kVA 400kVA
discuss personally
Model
SG (B) 10-10KV-400KVA
SG (B) 10-10KV-315KVA
SG (B) 10-10KV-250KVA
SG (B) 10-10KV-200KVA
Basic info
Brand Vziman
Model NO. Non-encapsulated Class H dry-type power transformer 200KVA 250KVA 315KVA 400KVA
Rated capacity 400kVA
Voltage grade 10KV
Series SG (B) 10
Product Detail

Description:

Non-encapsulated Class H dry-type power transformers, available in capacity specifications of 200kVA, 250kVA, 315kVA and 400kVA, are high-efficiency power conversion devices specifically designed for modern power systems. These transformers adopt an open-frame structure without enclosed encapsulation of windings, making internal components visually accessible and easy to maintain. Their core structure is built with Class H insulation materials, which enable stable operation in high-temperature environments and effectively ensure the transformer's reliable performance under complex working conditions. In practical applications, whether for power distribution systems in commercial buildings or power supply for industrial production, these transformers with different capacities can precisely adapt to diversified power demands, providing solid support for power transmission and distribution.


Feature:

Exceptional Insulation Performance

  • Uses Class H insulation material with a maximum operating temperature of 180°C

  • Resistant to high temperatures and aging, ensuring safe and stable operation

  • Extends service life significantly

Efficient Heat Dissipation Design

  • Non-encapsulated structure promotes natural air convection

  • Rapid heat dissipation prevents thermal buildup

  • Maintains optimal operating efficiency

High Reliability & Durability

  • Premium electromagnetic wires and silicon steel laminations

  • Advanced manufacturing processes ensure short-circuit resistance

  • Withstands overload conditions, reducing maintenance costs

Flexible Installation & Easy Maintenance

  • Open-frame design simplifies installation procedures

  • Quick fault diagnosis and component accessibility

  • Minimizes downtime and improves grid efficiency

Environmentally Friendly & Energy Efficient

  • Oil-free design eliminates contamination risks

  • Optimized electromagnetic design reduces no-load and load losses

  • Significant long-term energy cost savings

Parameter:



企业微信截图_17230996998839.png


企业微信截图_17230995265040.png


The working principle of an unencapsulated Class H dry-type power transformer?

Key Components:

  • Iron Core: It is usually made up of laminated high-quality silicon steel sheets, featuring low loss and low noise. The function of the iron core is to concentrate and guide the magnetic field, thus improving the efficiency of the transformer.

  • Primary Winding: Connected to the high-voltage side, it receives the input voltage. The primary winding is usually wound with copper or aluminum wires.

  • Secondary Winding: Connected to the low-voltage side, it outputs the required voltage. The secondary winding is also wound with copper or aluminum wires.

  • Insulation Materials: H-class insulation materials such as NOMEX paper and fiberglass are used, which possess excellent heat resistance and electrical properties.

  • Cooling System: Usually, natural air cooling (AN) or forced air cooling (AF) is adopted. The appropriate cooling method is selected according to specific application requirements.

Working Process:

  • Input Voltage: The alternating current power source is applied to the transformer through the primary winding.

  • Generating Magnetic Field: The current in the primary winding generates an alternating magnetic field in the iron core.

  • Transferring Magnetic Field: The alternating magnetic field is transferred to the secondary winding through the iron core.

  • Inducing Electromotive Force: The alternating magnetic field induces an electromotive force in the secondary winding, generating the output voltage.

  • Output Voltage: The secondary winding outputs the required voltage for the load to use.


Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
What aspects does the inspection of industrial and commercial energy storage cover?
What aspects does the inspection of industrial and commercial energy storage cover?
As a frontline tester, I work with industrial and commercial energy storage systems daily. I know firsthand how critical their stable operation is for energy efficiency and business profitability. While installed capacity grows rapidly, equipment failures increasingly threaten ROI—over 57% of energy storage plants reported unplanned outages in 2023, with 80% stemming from equipment defects, system anomalies, or poor integration. Below, I share practical testing insights for the five core s
Oliver Watts
06/21/2025
Commercial and Industrial Energy Storage Systems
Commercial and Industrial Energy Storage Systems
I. Core Value Proposition✅ Energy Cost Optimization: Reduce electricity expenses by 30%-50% through peak-valley arbitrage (EU peak/off-peak spreads up to €0.25/kWh) ✅ Power Reliability: Seamless backup power switching (<20ms response) for critical operations ✅ Renewables Integration: Increase solar self-consumption to >90%, minimizing curtailment losses ✅ Carbon Reduction: Achieve ~500 tons CO₂e annual reduction (1MW/2MWh system reference) II. Key Application Scenarios & Solutions
RW Energy
06/21/2025
AI-Enhanced Grid Frequency Regulation System Design for Commercial & Industrial Energy Storage Systems
AI-Enhanced Grid Frequency Regulation System Design for Commercial & Industrial Energy Storage Systems
As renewable energy penetration rises in modern power systems and load variability grows increasingly complex, instability issues—especially frequency fluctuations—have become more prominent. Intelligent commercial and industrial energy storage systems address this challenge by leveraging AI to boost grid - frequency regulation efficiency and accuracy. They enable real - time frequency monitoring, millisecond - level charge/discharge responses, intelligent scheduling with continuous
Dyson
06/21/2025
What are the maintenance and fault prevention measures for industrial and commercial energy storage systems?
What are the maintenance and fault prevention measures for industrial and commercial energy storage systems?
As a front-line practitioner in commercial and industrial energy storage, I understand deeply that scientific prevention and maintenance strategies are crucial for long-term system stability. Here’s my professional summary based on years of field experience:1. Core Strategies for Fault Prevention and MaintenanceBattery SystemIn daily operations, I've found precise parameter control essential. Maintain battery temperature at 25±2℃, triggering alarms when deviating by ±15℃. Lim
Felix Spark
06/21/2025
What are the common faults that occur during the operation of equipment related to industrial and commercial energy storage?
What are the common faults that occur during the operation of equipment related to industrial and commercial energy storage?
As an important part of the new power system, the stable operation of commercial and industrial energy storage systems is directly related to energy utilization efficiency and enterprise economic benefits. With the rapid growth of the installed capacity of commercial and industrial energy storage, equipment failure rate has become a key factor affecting investment returns. According to data from the China Electricity Council, in 2023, the proportion of unplanned outages of energy storage power s
Felix Spark
06/21/2025
Operational Analysis of Distributed Energy Storage Systems for Commercial & Industrial Behind-the-Meter Applications
Operational Analysis of Distributed Energy Storage Systems for Commercial & Industrial Behind-the-Meter Applications
Energy storage technology, a focal point in new energy, stores electricity for grid peak/valley supply adjustment. Distributed energy storage in commercial/industrial contexts cuts costs via peak - shaving, boosts grid stability, and mitigates peak - valley imbalances. This paper explores its application for commercial/industrial users from scenarios and feasibility.1 Application Scenario Analysis1.1 Demand AnalysisElectricity costs dominate commercial/industrial energy expenses, especially for
Echo
06/21/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!