• 6.6kV Three-phase Power Distribution Transformer
6.6kV Three-phase Power Distribution Transformer
discuss personally
Model
S11-1500/6.6
Basic info
Brand Vziman
Model NO. 6.6kV Three-phase Power Distribution Transformer
Rated capacity 1500kVA
Voltage grade 6.6KV
Series Distribution Transformer
Product Detail

Product overview:

  • High reliability of operation verification in more than 50 countries and regions around the world.

  • Mainly used in power generation enterprises, industrial and mining enterprises, water conservancy facilities, petrochemical enterprises 6.6 kV power distribution system.

  • Products are mainly exported to southeast Asia, East Asia, Central Asia and other developing countries and regions.

  • Standards: IEC 60076 series, IEC 6013, IEC 60214-1, IEC 60296; GB1094 series, GB/T6451-2015, GB/T7597-2007, etc.

Product advantages

Leading technology:

  • High pressure copper tape winding technology, improve lightning resistance.

  • Low voltage copper foil winding technology, high quality A class insulation material insulation.

  • Small magnetic leakage, high mechanical strength, strong short circuit resistance.

  • Iron core 45° full oblique joint step laminated structure.

The shell:

  • Mitsubishi laser cutting machine and CNC punching, reducing, folding and other equipment to ensure the accuracy of processing.

  • ABB robot automatic welding, laser detection, to avoid leakage, qualified rate of 99.99998%.

  • Electrostatic spray treatment, 50 years of paint (coating corrosion resistance within 100h, hardness ≥0.4.

  • Fully sealed structure, maintenance-free and maintenance-free, normal operation life of more than 30 years.

The iron core

  • The core material is high quality cold rolled grain oriented silicon steel sheet with mineral oxide insulation (from Baosteel, Wisco, China).

  • Minimize loss level, no-load current and noise by controlling the cutting and stacking process of silicon steel sheet.

  • The iron core is specially reinforced to ensure the transformer structure is firm during normal operation and transportation.

winding:

  • Low voltage winding is made of high quality copper foil, excellent insulation resistance.

  • The high voltage windings are usually made of insulated copper wire, using the patented technology of Hengfengyou Electric.

  • Very good resistance to radial stress caused by short circuit.

 High quality material:

  •  Baowu Steel Group production of silicon steel sheet.

  • High quality anaerobic copper from China.

  • CNPC (Kunlun Petroleum) High quality transformer oil (25# 40#).

 Other instructions:

  • The low-voltage outgoing terminal is tinned copper bar.

  • The high-voltage outlet terminals are ring tinned bolts.

  • Default no-load voltage regulation (on-load voltage regulation can be customized) Tap switch 5 or 7 speed adjustment.

  • Transformers above 630KVA are protected by gas relays.

Ordering instructions:

  • Main parameters of transformer (voltage, capacity, loss and other main parameters.

  • Transformer operating environment (altitude, temperature, humidity, location, etc.

  • Other customization requirements (tap switch, color, oil pillow, etc.

  • The minimum order quantity is 1 sets, worldwide delivery within 7 days.

    Normal delivery period of 30 days, worldwide fast delivery.

How to choose the parameters of three-phase distribution transformer?

Main Parameters of a Transformer

Rated Capacity:

  • Definition: The rated capacity of a transformer is the apparent power it can output under rated operating conditions. The unit is kilovolt-amperes (kVA) or megavolt-amperes (MVA).

  • Common Values: For a common 6.6 kV three-phase distribution transformer, the rated capacities include 100 kVA, 200 kVA, 315 kVA, 400 kVA, 500 kVA, 630 kVA, etc.

Rated Voltage:

  • Definition: Rated voltage includes the rated voltage on the high-voltage side and the rated voltage on the low-voltage side.

  • Example: For a 6.6 kV transformer, 6.6 kV is the rated voltage on the high-voltage side. The rated voltage on the low-voltage side is typically 0.4 kV or 0.69 kV, depending on the user's requirements.

Short-Circuit Impedance:

  • Definition: Short-circuit impedance is an important parameter of a transformer, indicating the impedance of the transformer under short-circuit conditions. The size of the short-circuit impedance affects the short-circuit current and the voltage drop during a short circuit, which is significant for the protection and operational stability of the transformer.

No-Load Loss:

  • Definition: No-load loss is the power consumed by the transformer when it is in a no-load state (i.e., the secondary side is open). It primarily includes hysteresis losses and eddy current losses in the core, as well as resistance losses in the windings. The smaller the no-load loss, the higher the efficiency of the transformer.

Load Loss:

  • Definition: Load loss is the power consumed by the transformer when it is in a loaded state (i.e., the secondary side is connected to a load). It primarily includes resistance losses in the windings and additional losses due to leakage flux. Load loss is proportional to the square of the load current and is an important indicator of transformer performance.

  • This translation provides a clear and concise explanation of the main parameters of a transformer, including rated capacity, rated voltage, short-circuit impedance, no-load loss, and load loss.

Know your supplier
Vziman
Zhejiang Vziman Electric Group Co., Ltd. is a high-tech enterprise specializing in R&D, manufacturing, and service of power electrical equipment. Committed to innovation, quality, and customer satisfaction, it supplies smart solutions for global power sectors, covering grid construction, new energy, and industrial distribution. Core Business • Switchgear (GIS, circuit breakers, Recloser, Load break switch) • Distribution equipment (transformers, RMU, smart terminals) • Power automation systems • Engineering services (installation, maintenance, consulting) Technical Strength • Provincial R&D center, multiple patents • Modern production, ISO/GB/IEC/CE/UL certified • High capacity, large-scale delivery support Market & Vision Serves State Grid, Southern Grid, and global projects (Asia, Africa, Europe, etc.). Aims to lead in smart grids and new energy, promoting sustainable energy development.
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150000000
Professional Experience
3 years
Workplace
10000m²
占位
占位
Related Products
Related Knowledges
The design of the three-purpose grounding transformer
The design of the three-purpose grounding transformer
Underground Power Cable Transmission LinesDirect - buried power cable lines have large ground - distributed capacitance, causing high single - phase - to - ground short - circuit capacitive current. For 10 kV lines, if this current exceeds 10 A, arcs hardly self - extinguish, risking arc overvoltage and endangering line equipment. Arc extinction is thus necessary. With a Dyn - connected main transformer, an arc - suppression coil on the secondary neutral point suffices. For Yd - connected ones,
Dyson
06/12/2025
Failure Analysis and Design Optimization of Conventional Grounding Transformers
Failure Analysis and Design Optimization of Conventional Grounding Transformers
I. Core Cause of Damage: Electrodynamic Impact (Complying with GB/T 1094.5 / IEC 60076-5)The direct cause of high-voltage winding end collapse is the instantaneous electrodynamic impact induced by short-circuit current. When a single-phase grounding fault occurs in the system (such as lightning overvoltage, insulation breakdown, etc.), the grounding transformer, as the fault current path, withstands high-amplitude and steep-rise-rate short-circuit currents. According to Ampère's force law
Felix Spark
06/12/2025
Analysis of Grounding Transformer Operational Behavior Under System Single-Phase-to-Ground Fault Conditions
Analysis of Grounding Transformer Operational Behavior Under System Single-Phase-to-Ground Fault Conditions
1 Theoretical AnalysisIn distribution networks, grounding transformers serve two key roles: powering low - voltage loads and connecting arc - suppression coils at neutrals for grounding protection. Grounding faults, the most common distribution network fault, heavily impact transformers’ operating characteristics, causing sharp changes in electromagnetic parameters and status.To study transformers’ dynamic behaviors under single - phase grounding faults, build this model: Assume a tr
Felix Spark
06/12/2025
Design Calculations for Neutral Grounding Schemes and Grounding Transformer Sizing in Utility-Scale Solar PV Plants
Design Calculations for Neutral Grounding Schemes and Grounding Transformer Sizing in Utility-Scale Solar PV Plants
1 Classification of Neutral Grounding Methods for Solar Photovoltaic Power StationsInfluenced by differences in voltage levels and grid structures across regions, the neutral grounding methods of power systems are mainly categorized into non-effective grounding and effective grounding. Non-effective grounding includes neutral grounding via arc suppression coils and neutral ungrounded systems, while effective grounding comprises neutral solid grounding and neutral grounding via resistors. The sel
Dyson
06/12/2025
Zero-Sequence Impedance Characterization of Dry-Type Grounding Transformer with ZN Connection
Zero-Sequence Impedance Characterization of Dry-Type Grounding Transformer with ZN Connection
In a neutral-insulated three-phase power system, an earthing transformer provides an artificial neutral point, which can be solidly earthed or earthed via reactors/arc suppression coils. The ZNyn11 connection is typical, where zero-sequence magnetomotive forces in the inner/outer half-windings of the same core column cancel out, balancing fault currents in series windings and minimizing zero-sequence leakage flux/impedance.Zero-sequence impedance is critical: it determines fault current magnitud
Dyson
06/12/2025
Case Analysis on Maloperation of Grounding Transformer Overcurrent Protection Relay
Case Analysis on Maloperation of Grounding Transformer Overcurrent Protection Relay
The neutral grounding mode refers to the connection between the power system neutral point and ground. In China's 35 kV and below systems, common methods include ungrounded neutral, arc-suppression coil grounding, and small-resistance grounding. The ungrounded mode is widely used as it allows short-term operation during single-phase grounding faults, while small-resistance grounding has become mainstream for its fast fault removal and overvoltage limitation. Many substations install grounding tr
Felix Spark
06/12/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!
商品视频播放