• DS4 40.5kV 126kV 145kV 252kV High voltage disconnect switch
DS4 40.5kV 126kV 145kV 252kV High voltage disconnect switch
discuss personally
Model
DS4-252/3150-50
DS4-252/2000-40
DS4-145/2000-40
DS4-126/3150-40
DS4-126/2000-40
DS4-72.5/2000-40
DS4-40.5/4000-50
DS4-40.5/2500-40
DS4-40.5/2000-40
Basic info
Brand ROCKWILL
Model NO. DS4 40.5kV 126kV 145kV 252kV High voltage disconnect switch
Rated voltage 126kV
Rated normal current 2000A
Series DS4
Product Detail

Description:

DS4 series disconnector adopts double column horizontal rotation structure, which is composed of three unipolar and operating mechanism. Each monopole consists of a base, a post insulator, and a conducting part. A rotating pillar insulator is installed at both ends of the base, and the contact arm and contact arm of the main electrical part are respectively fixed on the top of the pillar insulator. The operating mechanism drives one end of the pillar insulator to rotate, and drives the other end of the pillar insulator to reverse rotate 90° through the cross connecting rod, so that the conductive knife can turn on the horizontal plane to realize the isolation switch opening and closing. The opening state forms a horizontal insulation fracture.

Main Features:

  •  The conductive arm is made of rectangular aluminum alloy tube or aluminum alloy plate, high strength, light weight, large heat dissipation area, good anti-corrosion performance.

  •  The contact part of the conductive arm adopts external pressure plate spring structure. The plate spring is made of alloy material with good elasticity, which can keep the contact pressure stable for a long time and overcome the drawbacks of the spring internal pull structure.

Technical parameter

What are the structural characteristics of the disconnector?

Contact System:

  • Description: The contact system is a critical part of the isolator switch, consisting of moving contacts and stationary contacts. The moving contact is typically connected to the operating handle via a transmission mechanism and can move to engage or disengage from the stationary contact under the influence of the operating force.

  • Surface Treatment: To ensure good contact performance, the contact surfaces are often specially treated, such as silver plating. This reduces contact resistance and minimizes heat generation.

  • Shape Design: The shape of the contacts is also important. Common types include knife-blade contacts and finger contacts, which provide a larger contact area to ensure safe and stable current flow.

Insulation Part:

  • Description: The insulation part ensures that there is sufficient insulation between different potential sections of the isolator switch. It is mainly composed of insulators, which are typically made of ceramic, glass, or composite materials.

  • Ceramic Insulators: Ceramic insulators have excellent insulation properties, mechanical strength, and weather resistance, making them suitable for various harsh environmental conditions.

  • Glass Insulators: Glass insulators have good self-cleaning properties, reducing the impact of dust and dirt on insulation performance.

  • Composite Insulators: Composite insulators are lightweight and have excellent pollution flashover resistance, making them advantageous in special application scenarios.

Transmission Mechanism:

  • Description: The transmission mechanism is used to transfer the operating force from the operating handle to the moving contact, enabling the opening and closing actions of the contacts. It can be a manual linkage mechanism or an electric operating mechanism.

  • Manual Linkage Mechanism: This type of mechanism is simple in structure and highly reliable. It converts the rotational motion of the operating handle into linear or rotational motion of the moving contact through a series of linkages and shafts.

  • Electric Operating Mechanism: Suitable for applications requiring remote control or frequent operation, this mechanism uses a motor, reduction gear, and transmission components to achieve automated operation of the isolator switch.

Base and Support:

  • Description: The base and support are the supporting structures of the isolator switch, used to fix the contact system, insulation part, and transmission mechanism. The base is usually made of metal and has sufficient mechanical strength and stability to bear the weight of the isolator switch and various forces generated during operation.

  • Design Considerations: The support is designed based on the installation method and application scenario of the isolator switch. For example, the support structure of indoor isolator switches differs from that of outdoor isolator switches. Outdoor isolator switches require supports that consider factors such as wind resistance, rain protection, and corrosion resistance.

 

Know your supplier
ROCKWILL
Rockwill Electric Group Global Manufacturer of High voltage and medium-voltage power equipment and smart grid solutions. Headquartered in Wenzhou, China. Serving 100+ countries with quality, innovation, and trust. What We Offer: • HV-MV switchgear (VCB, SF₆ circuit breakers, RMU, GIS) • Distribution transformers and substations • Smart grid and monitoring systems • Solar, wind, EV charging, and energy storage solutions • EPC turnkey power projects Certified: ISO 9001 / ISO 14001 / ISO 45001
Main Categories
High voltage
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$150,000,000
Professional Experience
16 years
Workplace
108000m²m²
占位
占位
Related Products
Related Knowledges
What are the common failures in single-phase distribution transformers?
What are the common failures in single-phase distribution transformers?
Single - phase distribution transformers, as crucial voltage transformation and power distribution equipment in the power system, are widely used in rural power grids, low - voltage residential areas, and areas with concentrated single - phase loads.With the continuous increase in the proportion of single - phase loads in the distribution network, the failure rate of single - phase transformers has also increased. Timely identification and handling of these faults are of great significance for e
Felix Spark
06/18/2025
Comprehensive Analysis of Single-Phase Distribution Transformer Technologies in Multiple Application Scenarios
Comprehensive Analysis of Single-Phase Distribution Transformer Technologies in Multiple Application Scenarios
Introduce the 10 kV line to the load center. Following “small capacity, dense points, short radius”, adopt the new single - phase distribution mode, featuring notable low - voltage line loss reduction, high power quality, and reliability. By comparing the economy and reliability of single - phase vs three - phase transformers in different scenarios, this paper analyzes their applicable scope and application suggestions.Single - phase transformers are classified by distribution mode:
Echo
06/18/2025
What are the technical features and applications of single-phase distribution transformers?
What are the technical features and applications of single-phase distribution transformers?
1 Technical Features of Single - phase TransformersFrom the operation practice of foreign distribution networks, it is known that single - phase transformers are quite widely applied. Compared with three - phase transformers, they have unique advantages, which are specifically reflected as follows:1.1 Simple StructureThis characteristic makes that, when using the same materials, for single - phase transformers with the same capacity, their no - load losses are lower than those of three - phase t
Echo
06/17/2025
Application Analysis of High-Voltage Single-Phase Distribution Transformers in Power Distribution Networks
Application Analysis of High-Voltage Single-Phase Distribution Transformers in Power Distribution Networks
1. Safety Hazards in Substation Operation1.1Transformer FailuresTransformers are critical substation equipment and maintenance focal points. Loose/defective components often cause malfunctions, while internal damage (e.g., oil tank impurities/water/bubbles) triggers partial discharge, risking major losses during outages.1.2 Overvoltage RisksOutdoor overvoltage threatens equipment. Lightning-induced impulse currents alter transformer electromagnetic energy, and circuit breaker misoperations cause
Echo
06/17/2025
Prototype Development of 20 kV Single-Phase Distribution Transformer
Prototype Development of 20 kV Single-Phase Distribution Transformer
1. Design of 20 kV Single - phase Distribution Transformer20 kV distribution systems usually adopt cable lines or mixed cable - overhead line networks, and the neutral point is mostly grounded through a small resistance. When a single - phase grounding occurs, there will be no problem that the phase voltage will rise by more than √3 times as in the case of a single - phase fault in a 10 kV system. Therefore, the single - phase distribution transformer of the 20 kV system can adopt the type
Dyson
06/17/2025
Single-Phase Transformer with High Lightning Impulse Withstand Capability
Single-Phase Transformer with High Lightning Impulse Withstand Capability
1 IntroductionTo ensure the safe operation of railways and reduce the risk of lightning damage to railway telecommunication control systems, the author has specially researched and designed a single - phase series transformer with a relatively high impulse voltage withstand level, with the model number D10 - 1.2 - 30/10. This transformer is equipped with an oil conservator and adopts a fully sealed structure (it can also be designed as a dry - type structure according to actual needs). This seri
Dyson
06/17/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!
商品视频播放