• 25-36kW Three Phase 3 MPPTs C&I Grid-tied Inverters
  • 25-36kW Three Phase 3 MPPTs C&I Grid-tied Inverters
25-36kW Three Phase 3 MPPTs C&I Grid-tied Inverters
discuss personally
Model
WN25K-MT
Basic info
Brand Wone
Model NO. 25-36kW Three Phase 3 MPPTs C&I Grid-tied Inverters
Max.Input Voltage 1100V
Max. Input Current per MPPT 30A
Number of MPP trackers 3
Nominal Output Voltage 400V
Max.Efficiency 98.8%
Series C&I Grid-tied Inverters
Product Detail

Description:

The three-phase inverter is ideal for commercial rooftop system solutions. The SMT series achieves maximum efficiency of 98.8% and features unique design highlights, including solid capacitors, fuse-free design, and optional Arc Fault Circuit Interrupter (AFCI) function. These new features ensure a longer lifespan and a higher safety level of operation, allowing for an improved user experience. With a compact design and weight of just 40 kg, the SMT series is more convenient to install. With a maximum DC input voltage of 1100V, a wider MPPT range for complex rooftops, and a start-up voltage of 180V, the SMT series guarantees an earlier generation of power and a longer working time to maximize long-term returns and profitability in safe operating conditions.

Feature:

Smart Control & Monitoring 

  • String level monitoring. 

  • Dynamic power export limit.

Optimal Generation for Higher Return

  • 98.8% Max. Efficiency.

  •  Up to 130% DC input oversizing & 110%.

 AC output overloading

  • Superb Safety & Reliability.

  • Optional Arc-fault circuit interrupter.

  •  Optional Type II SPD on both DC and AC.

Friendly & Thoughtful Design

  • 40kg compact design.

  • Power line communication optional.

System Parameters:


image.png

image.png

What is G&I grid-tied inverter?

Definition:
A grid-connected inverter is a device that converts direct current (DC) into alternating current (AC) and ensures that the output AC matches the frequency, phase, and voltage amplitude of the power grid. In this way, the converted electrical energy can be directly integrated into the power grid for use by households, enterprises, and the power grid itself.

Working Principle:

  • Input Circuit: The grid-connected inverter receives direct current from solar photovoltaic panels, wind turbines, or other DC power sources.

  • DC/AC Conversion: Through internal power electronic converters (such as inverter bridges), the direct current is converted into alternating current.

  • Synchronization Control: Through advanced control algorithms (such as Phase-Locked Loop, PLL), it ensures that the output alternating current is synchronized with the frequency, phase, and voltage amplitude of the power grid.

  • Output Circuit: The converted alternating current is fed to the power grid, and it is ensured that the output of the inverter complies with the power quality of the power grid.


Know your supplier
Wone
Main Categories
High voltage/Low voltage/Wire cable/Instrument meters/New energy/Tester/Production equipment/Generator/Electrical fittings/Integrated Electrical Equipment
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$50,000,000
Professional Experience
1 years
Workplace
65666m²m²
占位
占位
Related Products
Related Knowledges
Failure Analysis and Design Optimization of Conventional Grounding Transformers
Failure Analysis and Design Optimization of Conventional Grounding Transformers
I. Core Cause of Damage: Electrodynamic Impact (Complying with GB/T 1094.5 / IEC 60076-5)The direct cause of high-voltage winding end collapse is the instantaneous electrodynamic impact induced by short-circuit current. When a single-phase grounding fault occurs in the system (such as lightning overvoltage, insulation breakdown, etc.), the grounding transformer, as the fault current path, withstands high-amplitude and steep-rise-rate short-circuit currents. According to Ampère's force law
Felix Spark
06/12/2025
Analysis of Grounding Transformer Operational Behavior Under System Single-Phase-to-Ground Fault Conditions
Analysis of Grounding Transformer Operational Behavior Under System Single-Phase-to-Ground Fault Conditions
1 Theoretical AnalysisIn distribution networks, grounding transformers serve two key roles: powering low - voltage loads and connecting arc - suppression coils at neutrals for grounding protection. Grounding faults, the most common distribution network fault, heavily impact transformers’ operating characteristics, causing sharp changes in electromagnetic parameters and status.To study transformers’ dynamic behaviors under single - phase grounding faults, build this model: Assume a tr
Felix Spark
06/12/2025
Design Calculations for Neutral Grounding Schemes and Grounding Transformer Sizing in Utility-Scale Solar PV Plants
Design Calculations for Neutral Grounding Schemes and Grounding Transformer Sizing in Utility-Scale Solar PV Plants
1 Classification of Neutral Grounding Methods for Solar Photovoltaic Power StationsInfluenced by differences in voltage levels and grid structures across regions, the neutral grounding methods of power systems are mainly categorized into non-effective grounding and effective grounding. Non-effective grounding includes neutral grounding via arc suppression coils and neutral ungrounded systems, while effective grounding comprises neutral solid grounding and neutral grounding via resistors. The sel
Dyson
06/12/2025
Zero-Sequence Impedance Characterization of Dry-Type Grounding Transformer with ZN Connection
Zero-Sequence Impedance Characterization of Dry-Type Grounding Transformer with ZN Connection
In a neutral-insulated three-phase power system, an earthing transformer provides an artificial neutral point, which can be solidly earthed or earthed via reactors/arc suppression coils. The ZNyn11 connection is typical, where zero-sequence magnetomotive forces in the inner/outer half-windings of the same core column cancel out, balancing fault currents in series windings and minimizing zero-sequence leakage flux/impedance.Zero-sequence impedance is critical: it determines fault current magnitud
Dyson
06/12/2025
Case Analysis on Maloperation of Grounding Transformer Overcurrent Protection Relay
Case Analysis on Maloperation of Grounding Transformer Overcurrent Protection Relay
The neutral grounding mode refers to the connection between the power system neutral point and ground. In China's 35 kV and below systems, common methods include ungrounded neutral, arc-suppression coil grounding, and small-resistance grounding. The ungrounded mode is widely used as it allows short-term operation during single-phase grounding faults, while small-resistance grounding has become mainstream for its fast fault removal and overvoltage limitation. Many substations install grounding tr
Felix Spark
06/12/2025
Discussion on the Design of Low Zero-Sequence Impedance Grounding Transformers
Discussion on the Design of Low Zero-Sequence Impedance Grounding Transformers
With the expansion of power system scale and the cableization process of urban power grids, the capacitive current in 6kV/10kV/35kV power grids has significantly increased (generally exceeding 10A). As power grids at this voltage level mostly adopt neutral ungrounded operation mode, and the distribution voltage side of main transformers is usually in delta connection, lacking a natural grounding point, the arc during ground faults cannot be reliably extinguished, necessitating the introduction o
Dyson
06/11/2025
×
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!
商品视频播放