What is Arc Extinction Circuit Breaker?

Edwiin
05/20/2025

When the current-carrying contacts of a circuit breaker separate, an arc forms and persists briefly after contact separation. This arc is hazardous due to the heat energy it generates, which can produce explosive forces.
A circuit breaker must extinguish the arc without damaging equipment or endangering personnel. The arc significantly influences the breaker’s performance. Interrupting a DC arc is inherently more challenging than an AC arc. In an AC arc, the current naturally reaches zero during each waveform cycle, causing the arc to vanish momentarily. This zero-crossing creates an opportunity to prevent arc restrike, leveraging the brief interval of current absence to deionize the gap and inhibit re-ignition.
The conductance of an arc is proportional to the electron density (ions per cubic centimeter), the square of the arc diameter, and the inverse of the arc length. For arc extinction, it is essential to reduce free electron density (ionization), shrink the arc diameter, and increase arc length.
Methods of Arc Extinction
There are two primary methods for arc extinction in circuit breakers:
High Resistance Method
  • Principle: The arc’s effective resistance is increased over time, reducing the current to a level where heat generation can no longer sustain the arc, leading to extinction.
  • Energy Dissipation: Due to the arc’s resistive nature, most system energy is dissipated within the circuit breaker, a significant drawback.
  • Techniques to Increase Arc Resistance:
    • Cooling: Reduces ion mobility and electron density.
    • Arc Lengthening: Separating contacts increases the path length, raising resistance.
    • Cross-Section Reduction: Narrowing the arc’s diameter decreases conductance.
    • Arc Splitting: Dividing the arc into smaller segments (e.g., via metal grids or chutes) increases total resistance.

Low Resistance (Zero Current Interruption) Method

  • Applicability: Exclusive to AC circuits, leveraging the natural current zero-crossings (100 times per second for 50 Hz systems).
  • Mechanism:
    • The arc resistance is maintained at low levels until the current reaches zero.
    • At the zero-crossing, the arc extinguishes naturally. Dielectric strength is rapidly restored across the contacts to prevent restriking, leveraging the brief absence of current to deionize the gap.
  • Advantage: Minimizes energy dissipation within the breaker by utilizing the AC waveform’s inherent zero points, making it highly efficient for arc interruption.
Edwiin

Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
With the increasing complexity of power system operation environment and the deepening of power system reform, traditional power grids are accelerating the transformation to smart grids. The goal of equipment condition-based maintenance is achieved through real-time perception of equipment status by new sensors, reliable communication via modern network technology, and effective monitoring by background expert systems.I. Analysis of Condition-based Maintenance StrategyCondition-based Maintenance
Oliver Watts
06/11/2025
What is the current application status and development trend of medium-voltage switchgear?
What is the current application status and development trend of medium-voltage switchgear?
With the accelerated automation of power equipment, various medium-voltage switchgear have emerged in the market. Classified by insulation media, they are mainly divided into air-insulated, SF₆ gas-insulated and solid-insulated types, each with its own advantages and disadvantages: solid insulation offers good performance but poor environmental friendliness, SF₆ features excellent arc extinguishing capability but is a greenhouse gas, and air insulation has high cost-performance but larger volume
Echo
06/11/2025
What components make up the design of medium-voltage ring network distribution switchgear?
What components make up the design of medium-voltage ring network distribution switchgear?
As an expert who has been deeply engaged in the field of power system design for many years, I have always paid attention to the technological evolution and application practice of medium-voltage ring main distribution equipment. As a core electrical device in the secondary distribution link of the power system, the design and performance of such equipment are directly related to the safe and stable operation of the power supply network. The following is a professional analysis of the key design
Dyson
06/11/2025
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
What aspects should be paid attention to when installing medium-voltage switch cabinets during the initial stage of subway operation?
1. Statistics on Common Faults of Medium-Voltage Switchgear in the Early Operation StageAs project participants, we found during the early operation of a new metro line: 21 sets of power supply equipment were put into use, with a total of 266 accident phenomena in the first year. Among them, 77 faults occurred in medium-voltage switchgear, accounting for 28.9%—significantly higher than faults in other equipment. Statistical analysis shows that major fault types include: protection device s
Felix Spark
06/11/2025
Inquiry
Download
Experts Electrical is dedicated to serving the personnel in the global power industry.
Join Experts Electrical, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!